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convenient framework for convergence and stability arguments in parameter
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1. Introductioa

In this note we consider one aspect (arguments for convergcncc and

stability via a variational approach) of least-squares formulations of parameter

estimation problems for partial differential equations. Conceptually, one has a

dynamical model with "states" u = u(t,x), 0 ( t ( T, x e n, and parameters

q = q(t,x) in some admissible set Q. Given observations or data, z e Z,

of some type (e.g., z = (uij) as observations {u(ti,x ))), one wishes to

determine parameters q that give a best fit of the model to the data. That

is, one has the constrained optimization problem: From an admissible

parameter set Q, choose a parameter q so that the corresponding solution of

the dynamical model gives the best fit to data using a least-squares fit

criterion.

Abstractly, we have a state space H in which we solve a dynamical

system (S) for parameter dependent solutions u = u(q) with the parameters

chosen from some infinite dimensional set Q. If C: H -. Z is a mapping

from the state space to the observation space Z, the problem is one of

minimizing

2
(1.1) J(q,z) = fCu(q) - zZ

over q e Q, where I.Iz is an appropriately chosen norm in Z.

The fact that many problems of interest are infinite dimensional in both

state spaces H and parameter sets Q leads to a rich class of mathematical

questions including well-posedness, stability, and computational approaches. For

L
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example, consider the possibility of approximating the state space H by a

sequence HN of finite dimensional spaces and approximating the parameter

set Q by a sequence QM of finite dimensional sets so as to obtain

approximating problems: Minimize

(1.2) jN(qz)= CuN(q) Z 2

Z

over q E QM, where UN is an approximate solution to (S) lying in HN. An

important question concerns the ways in which QM approximating Q and

HN approximating H might guarantee convergence of solutions 1NM of

the problems of minimizing JN over QM to a solution of the problem of

minimizing J over Q. A number of results [8], [27] in this area are available

and we just sketch one set of arguments here (for examples and more details,

see [81)

Suppose that the sets Q and QM lie in some metric space Q and that.

in fact, there is a mapping iM: Q QM so that QM = iM(Q). Further,

assume that the following hypotheses are satisfied by QM and HN:

(i) For any qk -. q in Q we have CuN (qk) - Cu(q) in Z as Nk -

(ii) For each N, the mapping q _ jN(q,z) is continuous in the Q

topology;

(iii) The sets Q and QM, for each M, are compact in the Q topology,

(iv) For each q e Q, iM(q) q in Q with the convergence uniform in

q Q.

..............................

...................................................... *,r
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Under these assumptions, let ,,M be solutions for the problems for (1.2) and

let 2,M EQ be such that iM(M.M) = .,M From the compactness of Q.
A •

we may select subsequences, again denoted by (qNM) and {(NM} so that cTTM

Q and ,M (the latter follows from (iv)). The optimality of

qN,M guarantees that for every q e Q

(1.3) jN(VN'M,z) JN(iM(q),z).

Using (i) and (iv) and taking the limit as N,M -. in this inequality yields

J(&,z) ( J(q,z) for every q e Q, or that " is a solution of the problem for

(1.1). (Under uniqueness assumptions on the problems, one can actually

guarantee convergence of the entire sequence W',M in place of subsequential

convergence to solutions.)

We note that the essential aspects in the arguments sketched here involve

compactness assumptions on the sets QM and Q. Such compactness ideas play

a fundamental role in other theoretical and computational aspects of these

problems. For example, one can formulate distinct concepts of problem

stability and method stability involving some type of continuous dependence of

solutions on the observations z in Z, and use hypotheses similar to (i) - (iv),

with compactness again playing a critical role, to guarantee stability. We

illustrate with a simple form of method stability (other stronger forms arc also

amenable to this approach).

We might say that an approximation method, such as that formulated

above involving , HN and (1.2), is stable if

.7.

.!
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dist ( tN'M(zk),&(z°)) -.0

as N,M,k -, 0 for any zk -. z° in Z, where 7(z) denotes the set of all

solutions of the problem for (1.1) and N'M(z) denotes the set of all solutions

of the problem for (1.2). Here "dist" represents the usual distance set function.

Under hypotheses (i) - (iv) one can use arguments very similar to those

sketched above to establish that one has this method stability. If the sets

QM are not defined through a mapping iM as supposed above, one can still

obtain this method stability if one replaces (iv) by the assumptions:

(v) If (e)M is any sequence with qM F QM, then there exists q* in Q

and subsequence {q } with q -. q* in the Q topology;

(vi) For any q e Q, there exists a sequence (cM) with qM E QM

such that qM_, q in Q.

Similar ideas may be employed to discuss the question of problem

stability for the problem of minimizing (1.1) over Q - i.e. the orginal

problem and again compactness of the admissible parameter set plays a critical

role. For discussions of other questions related to problem stability, see [19],

[21] - and specifically Remark 5.1 of [21].

Compactness of parameter sets also appears to play an important role in

computational considerations. For example, in certain problems the formulation

outlined above (involving QM = IM(Q)) results in a computational framework

wherein the QM and Q all lie in some uniform set possessing compactness

properties. The compactness criteria can then be reduced to uniform

constraints on the derivatives of the admissible parameter functions. WXe have

[ .: .-,... ,. -_ .._.. .;. , .,,, ;, .. ;€ .€,....,. ... : , ,.. : . .: .. . ....:. .. .. ../... .. .. . .. .. .. ., .
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numerical examples which show that imposition of these constraints is

necessary (and sufficient) for convergence of the resulting algorithms. (This

offers a possible explanation for some of the numerical failures of such

methods reported in the engineering literature -e.g. see [37].).

Thus we have that compactness of admissible parameter sets play a

fundamental role in a number of aspects - both theoretical and computational-

in parameter estimation problems. This compactness may be assumed (and

imposed) explicitly as we have outlined here, or it may be included implicitly

in the problem formulation through Tychonov regularization as recently

discussed by Kravaris and Seinfeld [251. In the regularization approach one

restricts consideration to a subset Q1  of parameters which has compact

imbedding in Q, modifies the least-squares criterion to include a term which

insures that minimizing sequences will be Q1 bounded and hence compact in

the original parameter set Q.

Having made a case for the role that compactness of admissible

parameter sets might play in parameter estimation problems, we turn finally to

the (not unrelated) focus of this note. In particular, we wish to discuss some

problems in which a variational formulation (as opposed to the semigroup

approximation framework we have used in many of our previous discussions of

these problems - see [3,4,5,7,12,13,17]) permits relaxation of the compactness

criteria needed in convergence, stability and/or computational analyses. We

present several problems for which the variational framework can be used to

give convergence arguments in the spirit of techniques commonly used in the

finite-element approach (see [22] and the references therein) to initial-boundary

value problems for partial differential equations. As we shall see below, the
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"energy functionals" in our case are parameter dependent and the argumcnts

can become somewhat tedious in some instances.

In the next two sections we discuss problems for which the variational

approach offers an alternative to the semigroup formulation. However, there

are some problems for which the semigroup approach is not readily employed

but for which a variational framework is rather natural. We present two

su-h examples in Sections 4 and 5.

To facilitate our discussions, in some cases we restrict our remarks to

problems in which we minimize J and jN of (1.1) and (1.2) over a fixed set

Q, relegating the role that approximating sets QM play to comments and

referring the reader to [81 for an explanation of how one readily extends the

ideas to problems of minimizing jN over QM where QM approximates Q.

I
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II. A "I-D Seismic" inverse Problem

We consider the system

a2 u a au
(2.1) ql(x) -Wt t x (q 2 (x)-) t > 0, x E = (0, )

ax ax

au
(2.2) - (t,O) + q3u(t,0) = f(t)

ax

au au
(2.3) - (t,l) + q 4 - (t ' l) = 0

at ax

(2.4) u(O,.) = uo  , u(O,.) = vo

and the associated inverse problem of estimating ql, q 2 , q 3 . q4 ' f, given a

set of observations (Yi)} for {u(tixj)}.

Such problems arc motivated by certain versions of the so-called "l-D

Seismic Inversion Problem" (see, e.g. [2], [181). Roughly speaking. one has an

elastic medium (e.g., the earth) with density q, and elastic modulus q2. A

perturbation of the system (explosions, or vibrating loads from speciall\

designed trucks) near the surface (x=0) produces a source f for particle

disturbances u that travel as elastic waves, being partially reflected due to

the inhomogeneous nature of the medium. An important but difficult problcm

involves using the observed disturl-anccs at the surface or at point, along a
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"bore hole" to determine properties (represented by parameters in the system) of

the medium. In the highly idealized I-D "surface seismic" problem, one

assumes that data are collected at the same point (x=O) where the original

disturbance or "source" is located. In addition to this hypothesis, other

unrealistic special assumptions are made about the nature of the traveling and

reflected waves. Although the standard I-D formulations are far from reality,

exploration seismologists have developed techniques for processing actual field

data (performing a series of experiments and "stacking" the data) so that the

I-D problems are generally accepted as useful and worthy subjects of

investigation. Consequently, numerous papers (for some interesting references,

see the bibliographies of [2], [18]) on the I-D problems can be found in the

" research literature.

In many formulations of the seismic inverse problem, the medium is

. assumed to be the half-line x > 0 (with x = 0 the surface) while in others

(especially some of those dealing with computational schemes) one finds the

assumption of an artificial finite boundary (say at x = 1) at which no

downgoing waves are reflected ( an "absorbing" boundary). For the I-D

formulation this condition is embodied in a simple boundary condition of the

form (2.3); here q4 = vq 2 (1) /qT() and one can view this boundary condition

as resulting from factoring the wave equation (2.1) at x = I and imposing

the condition of "no upgoing waves" at x = 1.

Equation (2.1) is a I-D version of the equations for an isotropic elastic

medium while (2.2) represents an elastic boundary condition at the surface x

= 0 (q3 represents an elastic modulus for the restoring force produced by the

medium).
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In the usual seismic experiment, the medium is assumed initially at rest

so that uo = v0 = 0. While our analysis below can, with some tedium, be

extended to treat the case of parameter dependent initial conditions, we shall

assume that uo, vo  are given Kilown functions.

For our discussions here, we shall also assume that the source term f is

to be estimated in some function space although frequently this term can be

parameterized in terms of a Euclidean set of parameters, thus simplifying

somewhat the analysis. We shall also assume that q,(x) = I to facilitate

our arguments (otherwise the analysis is somewhat more tedious and involves

the use of parameter dependent inner products).

We reformulate the system (2.1)-(2.4) in variational or weak form, seeking

a solution t -, u(t) on 0 < t 4 T , with u(t) e H'(fl) , satisfying

(2.5) <utt, ,> + <q 2Du,D4,> + qlu(t,l)q(l) - q2(0)[q3u(t,0) - f(t)],(0) = 0
q4

for all , HI'(fl), along with initial conditions

(2.6) u(O) = uo , ut(0)= vo

Here and throughout, unless othrwise noted, < , > denotes the usual inner

product in HL =L 2 and D = x The parameters q = (q 2, q3, q4, f) are

assumed to be in some subset of C(fl) x R1 x R 1 x C(0,T) , although as we

shall point out later, these smoothness requirements can be relaxed.

• -. .' .'.. ,. --' . .- . ' .- , -' .', -., ' .- .- .-. .- ..' .'. , ',, ' -' - ,, ' -' .. . " .. -, -. .- . , . .. ' .- .. . . -. . -. .... ' -. .. . -. .
q" i. " ." - " , ," . i im • . q -. *, . - - ," " -.- ""- " . - "-"*° ."*"°" - " """ , . "." " """ '.• - "

•

• .. ,,,, . , " .-. ..~ nhhi,*-- m~ -.nd..n~k a,-m-lk~ a h . . .. . . .. . . .... . . . . , _ . ... .. ..
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The system (2.5) -(2.6) can, for the purposes of analysis, bc abstractly

formulated using the state space H = R2x H O(n) for statcs u~t) = (u(t,O),

u(t,l), u(t,.)). To be precise, define

V = qt+ E H q= 4<(0), 4 = i), 4, E HI(fl)}

A

and, for v (qtv in H ,the operators MO: H - H, NO: H -. H by

MOV = OMv N 0v = (0,C4 ,)

We also define the functionals a: V x V - R', b(t): V - R1 by

av i)= <DD>- Cq2(0)q 3V(0)4<0)

b( t)' C2(0)f(t)4(O)

Then we can rewrite (2.5) (2.6) as

A A A A A A

(2.7) <M0Ut 4 >H1 + <Nout,41>H + a(u(t),+,) + b (t)+, = 0

where u( t), +p c V. We note that in this case the operators No. NOt and

the functional a each depend on unknown parameters.

.... .. . ... . ........



Standard arguments [28, p.273] can be used to guarantee existence of

* A A A

solutions u to (2.7), (2.6) satisfying u e C(O,T;V), ut E C(O,T;H), Utt

HO(O,T;V) with (2.7) being satisfied in a weak or distributional sense.

Furthermore, one can rewrite (2.7) as a first order system and use semigroup

techniques to argue that, under additional smoothness assumptions on the

parameters and initial data, one obtains strong solutions that enjoy additional

smoothness properties. We shall return to these considerations below.

Turning to approximation and convergence arguments, we shall work with

our system in the form (2.5), (2.6) although we could equivalently use (2.7) in

our considerations. We consider Galerkin approximations on finite

dimensional subspaces HN c H'(0), N = 1,2,..., and make the standing

assumption on the orthogonal projections pN: HO(fl) -. HN.

Assumption A: If 4 e H0(fl), then pN _. 40 in H0 . For each o E H'(fl)

we have PNo -. o in H'.

If the observations for (2.1) - (2.4) for use in the least-squares functional

are given in pointwise form u(ti, xj ) for the displacement or in an H) sense

Ux(ti,.) for the strain, it suffices for the convergence and stability argumcnts

to argue that uN(t;qN) u(t;q) in H'(fl) whenever qN -. q in an

appropriate sense, where uN is the Galerkin approximation to the original

system (2.5), (2.6).

For parameters qN (qN qN, q N, fN) in an admissible parameter set

Q , the approximating systems are given by: Find uN(t) e HN satisfying for

all 4, E HN

.-- :: -3 .':? -":-, '.-':'. .- '''.- -. -. ',. ..-.-- -. ...'.-.-.-".'.. . . . ..-. ....,..,. .-..,...,. . ;. .: : . : . .
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qN( 1)
(2.8) <u %P> + <qN DuN,D4,> + - U(t,l) l) - qN(O) [quN(t,O) fN(t)](o)=O,

(14

uN(O) = pNu o

(2.9)

uN0) = PNv

Regarding the admissible parameter set Q we make the standing

assumptions:

Assumption B: The set Q is compact in the Q = C(fQ) x R 1 x R' x

H'(O,T) topology and is contained in the set

((q2, q3, q4, f) E Q I q2(x) > v > 0, q3 < - " < 0, 0 < p6 4 q4 ( C)

for some fixed positive constants cK,f,ev,n.

Suppose then that qN & in Q , where (qN) is any convergent

sequence in Q, and let uN(qN), u(q) denote the corresponding solutions to

(2.8), (2.5) respectively. Under Assumption A, we sec from the incquality

uN(q N ) .. , - . ., N . (q N ) p N U(- + p N U - U
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that it suffices to consider zN(t) = uN(t;qN) - pNu(t;-) and argue the

convergence zN(t) -. 0 in Hl(fl) for each t in [0,T].

Defining the "potential energy" functional I" H 1 x H' -- RI by

(2.10) ,(q)(,,q') <q 2Do,D+> - q 2(0)q 3,(0)4(0)

and the "boundary damping" functional B : H 1 x H 1 -. R' by

C12(1)
(2.11) B(q)(4,,) =- ( , ) I

we may use (2.5) (with q = -) and (2.8) in

<Z,P> = <(uN - u + u - pNu)tt,+>

to obtain

tzt, > + O(qN)(z N,, ) + B(qN)(zN ,,)

(2.12) - (q)(u,4,) + B(q)(ut.,P) " 4(qN)(pNu,,+) - B(qN)(pNu t ',)

+ <(I pN)u 4, > + qN(o)fN(t) 1 (o)

- _~~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~r 2(- f.w..- "(. k .m,,m-,aw ~ m,, m, w m-m ml bw.. t) 2 --



-14-

for all q E HN. In addition to this equation, zN satisfies the initial

conditions (see (2.6) and (2.9))

(2.13) zN(O) = 0 , z N(0) = 0.

Choosing = N (which is in HN) in (2.12) and defining

(2.14) 40(u) - 0 (q)(u,zN) - 4 ,(qN)(pNuZN)

(2.15) 63(t) = Z2 (0)f(t) - C4N(0)fN(t)

we obtain from (2.12) the equation

d {Iz ' + 4-(qN)(zN,zN)) + B(qN)(ZN Z)
2 dt tt

d

(2.16) - _ (,(u)) _ &O(u t ) + E (t) zN(t,0)
Nt N

+ B(i) (ut,z ) - B(qN)(pNut.zN) + <(IPN)u zN>.

If we further define the total energy functional

.... . . o. . . . . ... -. e.. . .



j E(qN)(ZN) E ZN1 2 + 4,(qN)(zN ZN)

and the auxilary expressions (for notational convenience)

q2(I) Eq2(1)
(2.17) Nt - ut(t, 1) N pt(t; )

q4 q4

(2.18) N (t) =qNJ( )qJ N U(to) -~()jut

(2.9) N(t) = fDu(t) -qNDpNU(t),

thcn we can rewrite (2.16) as

d EqN)(ZN(t)) + B(q N)(zN,zN)
dt E

(2.20) - AOu - O4(ut) + fBr(t) Z (t,O)) - B(t)ZN(t,O)

+ SN(t)ZN(t,l) + <(I -pN)U 2N

We next observe that from Assumption B we have

B(qN)(ZN ,z ZN >1 jzNt,1)j2
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while the inequality bc 1-b 2 + Lc2  implies, with a proper choice of
4 A

constants,

(t)zN(t,l) 16 N (t) + 31 z N(t'1) 2.
4V

Using these inequalities in (2.20) we obtain

d rLE(qN)(ZN(t)) _ &4>(U) - N(t)ZN(t'O)
dt

(2.21)

A ~4-(u et) + N( t) 12 _ 6N(t)zN(t,0) + <(I -pN)utt,ZN>.

Integrating this expression and using the facts that AO(u) It__ = 0 , zN(O) 0

and E(qN)(0) = 0 , we thus find

(2.22) E(qN)(zN(t)) 4 2A0(u) + 26N(t)zN(t,0) + 2JtGN(t)dt

where GN is defined as the function on the right side of the inequality

(2.21). Finally, to make use of this bound on the parameter-dcpendcnt encrgy.

we employ the following set of inequalities:
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2A0()( 2 2 I()I + L zNt12 + Nj jB t 2 + f N: N(to )2

-B(~NtO N ~B~t) I2+ 1 N(t) +12

2Ai)t VIA 1) + 1 Dz I( I r 2jj~~) 1 If I I)

N~)Z~ o < N ()I + N(,o)I

2~N(z~) ~ ~ 2 + IzoI2  4 - I6N (to) 12 +VlIZ(to

(2.23)) + N( k ) + JEzNi)d

(2.24) AtN~) 1 z~ 12 1 Dz I~ N~I+~z

N6 () -t)Nt)o 4? rT f Z(to
(225 rN3 T 0(t) l - 4 1~~ ++ F~

with

(2 .23 E~-. -. . . . . . . . . . . . . . . . . . .. z N. . .

-. --~ . A .ta.. c..
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(2.26) F(t) - q ~)2 rNt

2~ I 2V1 71 2

+ 11-pN).(t) 2 + rkj'

Thus, from (2.23) and the Gronwall inequality, to establish that

E(zN(t)) - 0 (and hence that zN(t) -, 0 in H1(l)), it suffices to argue that

rN(t) - 0 for each t in (0,T]. In view of the definitions (2.15), (2.17)

(2.19), this convergence is easily argued under the Assumptions A, B (where

q . in the Q topology) and that u(t) eH 1 (fn), ut(t) rH.(n), utt E

H°([O,T] x (1). To complete the discussions of this section, we shall comment

on a number aspects of the above-outlined results in the form of scvcral

remarks.

Remark 2.1. Recalling Assumption B, we note that the formulation above

requires the elastic moduli q2  lie in C(fQ) and that the compactness

properties of Q with respect to this component be in the C(fl) sense.

These are readily weakened by formulating the problem with the q2

component replaced by (q2(0), q2(l), q2 ) in R 1 x R 1 x Lm(fl) - see equation

(2.5) - with a corresponding change in the Q topology employed for the

compactness statement in Assumption B. This is especially useful if one wishes

to consider discontinuous elastic moduli (an important formulation in

"multi-layered" seismic problems) and the ease with which such modifications

are treated in the variational framework above make it ideally suited for

convergence arguments when estimating discontinuous parameters.

............... - . , ... . . .. ..-..-.-................ - ., .. . ,-- .- .. .. -,.. .... - . ..... .---.- ,.......-.... ,...... .. . . " . ....,. .. ,-
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Remark 2.2. In cases wherc the initial functions uO, v0 of (2.6) also depend

on unknown parameters, i.e., uo = up(q), vo = vo(q), then the initial conditions

(2.13) must be replaced by zN(0) pN[u 0(qN) - u0(q)] , zN(O) = PN[v 0(qN) -

v0(q-)]. The convergence arguments can be extended to this case if one makes

appropriate smoothness assumptions on uo, v0  as functions of the parameters

q.

Remark 2.3. Assumption A, the fundamental approximation hypotheses on

H N , is readily shown to hold if one chooses either the standard pieccwisc

linear or cubic splines as approximation elements and hence these

approximation schemes are included as special cases in the above treatment.

The arguments and assumptions must be modified slightly if one wishes to

include spectral families such as Legendre polynomials. (One obtains the

convergence pNo - o in H' for , E HI+E and Assumption A must be

modified accordingly. This, in turn, requires that u(t),ut(t) be in H 1+1 in

order to carry out the convergence arguments above.)

Remark 2.4. The presentation here assumes that one is performing the

optimization in the least-squares fit-to-data over the admissible parameter set

Q. In general, this is an infinite dimensional function space in the com-

ponents q2 and f. Thus one requires, as explained in Section 1, a second

approximation family Q"M and a double limit procedure. Recalling our

discussions from Section 1, we note that in the problems considered in this

section it suffices to use the set Q = C(Cl) x R' x R' x H1 (n) in the com-

pactness and approximation statements involving Q11 and Q.
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Remark 2.5. In the presentation above, we found that to guarantee the desired

convergence, it suffices to have u(t) and ut(t) in Hl(fl) and Utt E H0 ([O,T]xfl)

where u is the solution of (2.5), (2.6) corresponding to any limit parameters

Z in Q. Without further smoothness assumptions on the problem data one

cannot readily guarantee this desired regularity for u. For example, if q2

e LO(fM), uo E Hi(fi), vo E H°(n) and f E H°(O,T) , as we have already observed

one can use variational theory to guarantee existence of weak solutions with

utt E H0 (0,T; H-'). If, however, we assume q2 e H', uo E H2, vo E H 1 and f

e C 1 , then semigroup arguments similar to those given in [15] can be made to

obtain strong solutions with u(t) E H 2, ut(t) E H', and utt E H0 ([O,T]xn). Thus.

q2 in I1 and sufficient smoothness on uo, vo, f will yield the desired

smoothness for convergence.

Remark 2.6. The problem considered in this section was also investigated in

[13] using a semigroup (Trotter-Kato approximation theorem) approach. Several

differences in the results arc noteworthy. First, we note that in the

variational framework above, the approximating (HN c Hl(n)) basis elements

are not required to satisfy parameter dependent boundary conditions (contrary

to the situation in [13]). Furthermore, the unknown source term f in the

boundary condition (2.2) can be treated directly here (in [13], the treatment

required a transformation to a system with homogeneous boundary conditions

and nonhomogeneous equation) and this relaxes the smoothness and compactness

assumptions needed on the f component of Q. (A similar relaxation can

be obtained in the framework of [13] using a slightly different method for

transforming the nonhomogeneity in the boundary condition to the system

equation.) In this regard wc also note that the approach in [13] requires
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convergence e2 -. q2 in H'(n) as opposed to in C(fl) (or R' x R' x Lm(n) -

see Remark 2.1). Thus the related compactness assumption on the q,

component Q2 of Q is relaxed from H 1 to C compactness. This is

potentially important in several respects. The characterization of compactness in

C(n) is somewhat more natural (e.g. the Arzela-Ascoli lemma) than that in H 1

(e.g. see the embedding lemmas in [I]). Furthermore, in extending the ideas

here or in [13] to treat estimation of discontinuous coefficients, compactness in

H 1  (or a piecewise H 1  compactness) is more awkward and tedious to

formulate than a concept of pieccwise C or Lc compactness. Finally, we note

that the mode of convergence required in the compactness of Q also dictates

the type of approximating families QM one can use. We recall that the

interpolation operators 1M (see [13] [32]) for both pieccwise linear and cubic

spline approximations satisfy IM(q) - q uniformly in q E Q in either C

or H' whenever Q c H 2. However there are occasion where one might

desire to use the weaker convergence requirement (e.g. when dealing with

discontinuous coefficients and a pieccwise C topology), in which the

variational formulation of the above presentation can prove advantageous.

L



-22-

Il. Large Flexible Structures

In one important class of parameter estimation problems (see

* [5,20,24,29,35]), one wishes to estimate structural parameters (stiffness, damping,

loading, etc.) in complex continuum models for elastic structures. The methods

discussed in this paper can be successfully applied to such problems. To

explain the approach, we consider a variable structure cantilevered damped

beam with a tip body and base acceleration. Such a model might be used for

example to describe the vibrations of shuttle attached payloads or large

flexible spacecraft members. To be more specific we consider an

Euler-Bernoulli beam of length j with viscoelastic damping (a Kelvin-Voight

solid) and tip mass m (instead of a tip body). Then the equations for

transverse (planar) vibrations in the presence of an axial force due to base

acceleration are given by

O2u 82  u 83 u u

Ox 2 2- 2 + q 3 -- )+f,atx ax.~ axxx

t > 0, 0 < x < 1,

a a2 u a3u Ou
I - ax ( +3 2 t + - ] I x = g(t)

a 2u a 3u
[q2 -8X-

2 + q 3  ]Ixu l = 0

au
u(t,0) = - (t,0) = 0

ax

u(0,.) = 0 , ut(0,.) =

- ~~~~~~. . . . . . ... . . . . . . ... . . . . . .* .'t . .S * . -
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Here q= p(x) is the linear mass density, q2 
= EI(x) is the flcxural

rigidity or stiffness, q3 = cDl(x) is the viscoelastic damping coefficient, q4

= m is the tip mass, f is a distributed lateral load, and g is a

transversely applied force on the tip mass. The internal tension a due to

axial loading from base acceleration is assumed to be a known function of q,

= p, q4 = m , and q, = ao = the base acceleration. From observations of the

beam (displacement, velocity or strain), one might desire to estimate the

parameters q = (qC 1 q2, q3, q4 , q5 ) = (pEI'CDImaO) from a specified para-

meter set Q.

For such problems one can use a semigroup-Trotter-Kato approximation

formulation to develop computational procedures - e.g. see [5,26,31]. However,

some advantages are obtained in using a variational formulation (with "state"

u(t) = (u(t,.), u(t,I)) ) similar to that in (2.5), (2.6) or (2.7). This is done in

[6] and [15], [161 where detailed arguments for convergence are given. We shall

not discuss them fu:-ther here, except to note that the variational approach

allows for a much weaker compactness criterion on the admissible parameter

set Q. For example one can hypothesize compactness in the C(0,i) norm

(or in the L'0(0,1) norm in a sense similar to that mentioned in Remark 2.1

above) with respect to the components representing El and cDl. (Compare this

with the H2 or H2weak compactness assumptions in [5] and [26].)
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IV. Bioturbation in Abyssal Sediments

In the previous two sections, we introduced problems (seismic and flexible

structures) for which one can investigate parameter estimation techniques using

either a semigroup formulation or a variational formulation. In this section

and the next, we mention briefly two other classes of problems which are not

readily treated with a semigroup formulation yet which can easily be analyzed

in a variational setting. We first turn to problems related to the estimation of

the effects of biological mixing in abyssal sediments.

Sediment formation in lakes and deep seas is of great importance to

geophysical scientists who use core samples of this sediment in their

investigations of the history of the earth. Unfortunately, the historical records

contained in these core samples are often perturbed by a phenomenon called

bioturbation [36] which is the mixing of sediments due to the activities of

organisms near (on the order of 20-40 cm.) the sediment-water interface.

These activities consist primarily of burrowing (e.g., for safety) and

ingestion-excretion and are not easily described quantitatively.

An important goal of some geologists is to understand (quantitatively)

bioturbation well enough so as to enable one to remove its effects and

properly interpret the data in core samples, thereby sharpening the details in

these geologic records. A number of increasingly sophisticated mathematical

models have been proposed and a brief review of a number of these is given

in [23]. One model of interest is the one proposed by Guinasso and Schink in

[231.

- '-'a.- ' -- a . " " " "" -" " " ' " -- . --,. " -'. ' "" .. • .. - . " - i -,. ' - -:.- , - - .- -. " . - .' -
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Briefly, the model involves one-dimensional (depth) transport equations

for a moving chamber (assumed uniform in horizontal directions) in which

mixing and advective flow of material takes place. Depth in the chamber is

represented by coordinates x, 0 ( x ( L, and the chamber (and hence co-

ordinate system) is assumed to be moving upward with a velocity q2 = q2(t)

[corresponding to sedimentation rate or build-up] so that it is always located in

the top L cm. of the sediment, i.e., x = 0 is always at the

water-sediment interface. The bottom of the chamber x = L is located at

that depth beyond which (it is assumed) no further changes (i.e. no

bioturbation) in the historical records occur. If u u(t,x) is the

concentration of material (e.g., shards of ash, tracer, etc.) with whose movement

one is concerned, a model based on mass balance in the chamber, Fickian flux

for the bioturbation, and appropriate boundary flux considerations is given by

Ou 8 Ou u

(4.1) - = -xq 1 (x) - q 2(t)- t>0, 0<x<L,
at ax - ax' ax

au
(4.2) -q](0) -(t,0) + q2(t)u(t,0) = 0

ex

Ou
(4.3) -q1(L) ax (t,L) = 0

Here q, is a depth dependent "bioturbation" coefficient.

To understand the effects of bioturbation on the distribution of

material concentrations in core samples, it is sufficient then to know the

. .... . .... ....,. .. ...-. . . ..... .... -. .,.. ...;. . . ... .,..- .., ... ..-.. .... . . . ... ... . . ....,. ;
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parameters q (q1 ,q[2 q 3) q3= L and, of course, know that use of these

parameters in the model gives one an accurate quantitative description of

concentrations found in core samples. Given observations from core samples,

this leads to a parameter estimation problem involving estimation of the

functions q, and q2 and the chamber length q3" In [17], it is shown how

to formulate and treat such problems in a discrete semigroup - Trotter-Kato

approximation framework if one assumes that q, is chosen from a class of

functions with finite dimensional parametric representation and q2  is

independent of time. If one wishes to treat more general problems of

estimating x -. q,(x) and t -. q 2(t) in general classes of functions, these arc

not so easily investigated using a semigroup setting (note that (4.2) involves

time dependent unknowns). However, a variational formulation not unlike that

given in [10] provides an amenable framework in which convergence

arguments can be given under rather weak compactness assumptions on the

admissible parameter sets. These arguments, to be given elsewhere, are similar

in spirit to those given in [10] for transport problems involving estimation of

spatially and temporally dependent coefficients.

~~~~.................. .................. .... .•... ...... ....... '...... .. . *... ....... ,
,..... *..... . ...... .* .... . .. . .. . .......... .......... .. , ....... ....... *...* #. .
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V. Nonlinear Population Dispersal

In this section we turn to a brief discussion of estimation and a

variational formulation for problems that are typical of population dispersal

problems with transport coefficients (such as "diffusion" coefficients) that arc

density dependent. Nonlinearities of the general type we consider here arc

also important in porous media estimation problems.

Among the fundamental mechanisms often of interest to investigators in

population dispersal (see [9,11,14,30,33,34]) are (in addition to the usual

emigration-immigration, birth-death mechanisms): a dispersive mechanism

associated with random movement or foraging; an attractive or repulsive force

which induces directed movement of population members toward favorable or

away from unfavorable environmental surroundings; and a mechanism

representing population pressure due to interference between individuals in the

population. In mathematical models for transport including such mechani-ms,

it is density dependent higher order terms that present difficulties in

theoretical (and computational) considerations. To illustrate how a variational

framework may be used for such problems, we shall sketch fundamcntal

convergence arguments for problems involving estimation of the parameter

function q in simple models of the form

Ou 8 au
(5.1) q(t,x,u) - t > 0, X E fl = (0.1),

(5.2) u(t.0) = u(t,l) = 0

. : .. .- ,:.,....-. . . . . .... ..- , . .. ... ,..,-.............--...... .. ....- .
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(5.3) u(0,.) = u0 .

It's not difficult to extend the ideas to many of the more detailed models

(which include other desirable, but more easily treated mathematically,

transport terms) studied in [9,14,30,33,34]. While we shall formulate the

problem here in terms of estimating rather general "diffusion" coefficients q

in (5.1) from a rather broadly defined class Q , we actually have as basic

motivation the treatment of coefficients that are bounded below by

density-independent base values, that are saturation limited with rates that are

affine as a function of density in the range between the base-value and

saturation thresholds. To be precise, our development has been motivated by

problems where t -. q(t,x,t) is continuous and has the form (see [14])

m(t,x) 4 o(t,x)

(5.4) q(t,x,,) = a(t,x) + (t,x), ;o(t,x) 4 t, 4 ; (t,x)

M(t,x) r;l(t,x) 4 t, .

In such problems we seek to estimate o,,, ; 1, (which determines q in

(5.4) if the continuity assumption is invoked) from sets A,B,r o .r respectively.

We shall sketch our ideas in terms of rather general conditions on the

parameter set Q , noting that under appropriate assumptions on the sets

A,B,rorl , the above example is included as a special case.

++.- ., +i+ ; ,5. =.L=,. ....... ," ....... ".".. •..-."....... •-.... '.,..",...,...., - .. +" -' --- , -. '.,- ,-'',,"
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We first rewrite (5.1) (5.3) in variational form, which consists of

finding u(t) L H1 (f) satisfying

(5.5) <ut,q,> + <q(t,.,u)Du,D.> = 0

for all %p e Ho(fl) along with initial conditions

(5.6) u(O) = uo

To define an approximate state system, we assume we have chosen a family of

finite-dimensional state spaces HN C H '((I) with orthogonal projections pN

H'(Cl) -, HN in the H°(fl) inner product. We also assume Assumption A of

Section 2 holds with H1 replaced by I-I. The approximate systems are then

given by seeking uN(t) e HN satisfying

(5.7) <u ,.> + <qN(t,.,uN)DuN, Dqp> = 0

for all %p e HN and

(5.8) uN(O) = pNU0•

The parameters qN arc to be chosen from some admissible parameter set Q.

In the usual manner (see Sections 1,2), for a convergence and stability analysis
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one desires to argue that qN q. in Q implies uN(qN) - u(q) for arbitrary

sequences {qN} in Q. The mode of convergence in Q is, of course, also the

sense in which we wish to define "compactness" of Q. In this

particular example, we assume Q "compact" in the following sense:

Assumption C: Any sequence in Q has a convergent subsequence {qk}

with limit q in Q in the sense

(5.9) ] qk(t,.,v) - q(t,.,v) - 0 in H°(0,T)

for every v E L (fl).

In the case where Q consists of functions of the form given in (5.4), it is

straightforward to translate the compactness criteria of Assumption C into

easily verifiable compactness criteria on the parameter sets A,B,ro, r1.

Further assumptions (again motivated by and easily verified for sets

containing functions of the form (5.4)) on Q are necessary for convergence

arguments and we therefore assume the following:

Assumption D: There is a constant v > 0 such that <q(t,.,% )D+,D+> ,

vl1,pI for every q E Q, v,%p E H'(fl).

Assumption E: There is a constant > 0 such that lq(t,.,')+ o

M01+10 for all v e L(f), 4, E H°O(n), q E Q.

. . . . . . . . .
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AsumDtion F: There exists B ( L®(0,T) x fl) such that lq(t.,, F) q(t,x,r)j

( B(t,x)I " ni for all ,, e R1  and all q . Q.

We note that Assumption F implies existence of a constant K such that

lq(t,.,v) - q(t,-,u)l o  ( Kjv - ufo for all v,u e HO(n).

We are now in a position to outline convergence arguments, for which it

suffices (in the usual manner) to consider zN(t) = uN(t) - pNu(t) where uN.

u , the solutions of (5.7), (5.8), (5.5), (5.6) corresponding to qN &, respectively.

where qN _ q in the sense of (5.9) given in Assumption C and (qN) is any

such sequence in Q.

From (5.5) - (5.8) we obtain zN(O) = 0 and

(5.10) ,q> = <'(t,.,u)Du - qN(t,.uN)DuN, D4 > + <(I - pN)ut+40>

for all q, e HN. Choosing + = zN in (5.10) and adopting the notation \v),

qN(v) for Z (t,.,v), qN(t,.,v) throughout, we obtain

Sd IN1-2z  = <&(u)Du - qN(uN)DuN,DzN> + <(I - pN)ut,zN>,

or

i d ZNi 2 + <qN(uN)DzNDzN> = <Z(u)Du - qN(uN)DpNu,DZN>
dt

+ <(I - pN)u zN>.

::::: ;-: Z--L: % :S 2- Z , : . :d:::z • :- .- ' : :,:.':--**-..-->.:*- ** --. .* --- - - :;--.:: ,'
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From Assumption D we immediately find

(5.12) 1 dI jZN1 2 + vIzNIZ 4 <Zf(u)Du - q N(UN)D pNUDZN> + 1 (I _ pN)U1 2'
2 dt 12

+ 1 IZN12.
2

Considering the first term on the right side of this inequality we find (all

norms are the W0 norm unless otherwise indicated)

(5.13) <q(u)Du - qN(UN)DpNuDZN> = <(&(u) - qN(u))DuD ZN>

+ <(qN(U) _ qN(UN))DuDZN> + <qN(UN)D(u _ PNu), DZN>

QN(U)]DuI 12+V 1
I[q&(u) - q I DI

+ [N(U) _ qN(UN)]D)u 2 + v

+ I~qN(UN )D(u _ pNu)1 2 + vIDzN 12 .

Thc terms in thc right sidc of this inequality can be estimated (we- usc

Assumptions E and F) as follows:

I q N(UN)D(u.pNu) I MID(u -pNU)I
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I(q(u)- qN(u))Dul IDuj-Kj u - UNl IDu.KI(I" pN)u + jzN I)

1(&(u) -qN(u))Du I( I Du I 1(u) - qN(U) I-

Using these estimates and (5.13) in (5.12),we obtain

(5.14) i1' IZNI2 + 'IzNK' '<WZ1 + G N(t)
I d t4 11

i 2K2 I  2
where L =2 + "--- IDu and

N(t) I _ pN)UI' M 2 2 P) 2K 2 IDu 1 ' .u1

t -1(I -- ID(u NIu )U

+ - IDuj 2 j(u) - qN(u)12

The remaining arguments are similar to those (integration, Gronwall, etc.) of

Section 2. One easily obtains the convergence zN(t) -. 0 in H0(nI) for each

t and, actually, considering again (5.14), the additional results zN - 0 in

H0 (0,T; H'(fl)). Of course, appropriate smoothness (e.g. ut e H0((0,T] x £2) , Du

e H°(0,T; Lco(n)) ) assumptions on the solution u must be invoked.

We remark that the ideas sketched here readily extend to

multi-dimensional domains (I (see [10]) and that computational efforts bascd

on the variational framework have in preliminary calculations (see [14]) been

promising.

' .'i'.--......'- .--.. ' -9-.-.. .. . . .....- .... •--.. . . . ... . .. . .i-,.-. . ...---. '-.-
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